Subtle Cardinal

Subtle Cardinal

In mathematics, subtle cardinals and ethereal cardinals are closely related kinds of large cardinal number.

A cardinal κ is called subtle if for every closed and unbounded C ⊂ κ and for every sequence A of length κ for which element number δ (for an arbitrary δ), Aδ ⊂ δ there are α, β, belonging to C, with α<β, such that Aα=Aβ∩α. A cardinal κ is called ethereal if for every closed and unbounded C ⊂ κ and for every sequence A of length κ for which element number δ (for an arbitrary δ), Aδ ⊂ δ and Aδ has the same cardinal as δ, there are α, β, belonging to C, with α<β, such that card(α)=card(AβAα).

Subtle cardinals were introduced by Jensen & Kunen (1969). Ethereal cardinals were introduced by Ketonen (1974). Any subtle cardinal is ethereal, and any strongly inaccessible ethereal cardinal is subtle.

Read more about Subtle Cardinal:  Theorem

Famous quotes containing the words subtle and/or cardinal:

    I believe that there is a subtle magnetism in Nature, which, if we unconsciously yield to it, will direct us aright. It is not indifferent to us which way we walk.
    Henry David Thoreau (1817–1862)

    To this war of every man against every man, this also is consequent; that nothing can be Unjust. The notions of Right and Wrong, Justice and Injustice have there no place. Where there is no common Power, there is no Law; where no Law, no Injustice. Force, and Fraud, are in war the two Cardinal virtues.
    Thomas Hobbes (1579–1688)