Stochastic Dominance Constraints
Stochastic dominance relations may be used as constraints in problems of mathematical optimization, in particular stochastic programming. In a problem of maximizing a real functional over random variables in a set we may additionally require that stochastically dominates a fixed random benchmark . In these problems, utility functions play the role of Lagrange multipliers associated with stochastic dominance constraints. Under appropriate conditions, the solution of the problem is also a (possibly local) solution of the problem to maximize over in, where is a certain utility function. If the first order stochastic dominance constraint is employed, the utility function is nondecreasing; if the second order stochastic dominance constraint is used, is nondecreasing and concave.
Read more about this topic: Stochastic Dominance
Famous quotes containing the words dominance and/or constraints:
“It is better for a woman to compete impersonally in society, as men do, than to compete for dominance in her own home with her husband, compete with her neighbors for empty status, and so smother her son that he cannot compete at all.”
—Betty Friedan (b. 1921)
“The analogy between the mind and a computer fails for many reasons. The brain is constructed by principles that assure diversity and degeneracy. Unlike a computer, it has no replicative memory. It is historical and value driven. It forms categories by internal criteria and by constraints acting at many scales, not by means of a syntactically constructed program. The world with which the brain interacts is not unequivocally made up of classical categories.”
—Gerald M. Edelman (b. 1928)