The Steiner tree problem, or the minimum Steiner tree problem, named after Jakob Steiner, is a problem in combinatorial optimization, which may be formulated in a number of settings, with the common part being that it is required to find the shortest interconnect for a given set of objects.
The Steiner tree problem is superficially similar to the minimum spanning tree problem: given a set V of points (vertices), interconnect them by a network (graph) of shortest length, where the length is the sum of the lengths of all edges. The difference between the Steiner tree problem and the minimum spanning tree problem is that, in the Steiner tree problem, extra intermediate vertices and edges may be added to the graph in order to reduce the length of the spanning tree. These new vertices introduced to decrease the total length of connection are known as Steiner points or Steiner vertices. It has been proved that the resulting connection is a tree, known as the Steiner tree. There may be several Steiner trees for a given set of initial vertices.
The Steiner tree problem has applications in circuit layout or network design. Most versions of the Steiner tree problem are NP-complete. In fact, one of these was among Karp's original 21 NP-complete problems. Some restricted cases can be solved in polynomial time. In practice, heuristics are used.
Read more about Steiner Tree Problem: Euclidean Steiner Tree, Rectilinear Steiner Tree, Generalization of Minimum Steiner Tree, Steiner Ratio
Famous quotes containing the words steiner, tree and/or problem:
“To shoot a man because one disagrees with his interpretation of Darwin or Hegel is a sinister tribute to the supremacy of ideas in human affairsbut a tribute nevertheless.”
—George Steiner (b. 1929)
“The tree of knowledge is not the tree of life! And yet can we cast out of our spirits all the good or evil poured into them by so many learned generations? Ignorance cannot be learned.”
—Gérard De Nerval (18081855)
“The general public is easy. You dont have to answer to anyone; and as long as you follow the rules of your profession, you neednt worry about the consequences. But the problem with the powerful and rich is that when they are sick, they really want their doctors to cure them.”
—Molière [Jean Baptiste Poquelin] (16221673)