Steiner System

In combinatorial mathematics, a Steiner system (named after Jakob Steiner) is a type of block design, specifically a t-design with λ = 1 and t ≥ 2.

A Steiner system with parameters t, k, n, written S(t,k,n), is an n-element set S together with a set of k-element subsets of S (called blocks) with the property that each t-element subset of S is contained in exactly one block. In an alternate notation for block designs, an S(t,k,n) would be a t-(n,k,1) design.

This definition is relatively modern, generalizing the classical definition of Steiner systems which in addition required that k = t + 1. An S(2,3,n) was (and still is) called a Steiner triple system, while an S(3,4,n) was called a Steiner quadruple system, and so on. With the generalization of the definition, this naming system is no longer strictly adhered to.

As of 2012, an outstanding problem in design theory is if any nontrivial Steiner systems have t ≥ 6. It is also unknown if infinitely many have t = 5.

Read more about Steiner System:  Properties, History, Mathieu Groups, The Steiner System S(5, 6, 12), The Steiner System S(5, 8, 24)

Famous quotes containing the words steiner and/or system:

    To shoot a man because one disagrees with his interpretation of Darwin or Hegel is a sinister tribute to the supremacy of ideas in human affairs—but a tribute nevertheless.
    —George Steiner (b. 1929)

    Short of a wholesale reform of college athletics—a complete breakdown of the whole system that is now focused on money and power—the women’s programs are just as doomed as the men’s are to move further and further away from the academic mission of their colleges.... We have to decide if that’s the kind of success for women’s sports that we want.
    Christine H. B. Grant, U.S. university athletic director. As quoted in the Chronicle of Higher Education, p. A42 (May 12, 1993)