State Space Representation - Linear Systems

Linear Systems

The most general state-space representation of a linear system with inputs, outputs and state variables is written in the following form:

where:

is called the "state vector", ;
is called the "output vector", ;
is called the "input (or control) vector", ;
is the "state matrix", ,
is the "input matrix", ,
is the "output matrix", ,
is the "feedthrough (or feedforward) matrix" (in cases where the system model does not have a direct feedthrough, is the zero matrix), ,
.

In this general formulation, all matrices are allowed to be time-variant (i.e. their elements can depend on time); however, in the common LTI case, matrices will be time invariant. The time variable can be continuous (e.g. ) or discrete (e.g. ). In the latter case, the time variable is usually used instead of . Hybrid systems allow for time domains that have both continuous and discrete parts. Depending on the assumptions taken, the state-space model representation can assume the following forms:

System type State-space model
Continuous time-invariant
Continuous time-variant
Explicit discrete time-invariant
Explicit discrete time-variant
Laplace domain of
continuous time-invariant

Z-domain of
discrete time-invariant

Read more about this topic:  State Space Representation

Famous quotes containing the word systems:

    What is most original in a man’s nature is often that which is most desperate. Thus new systems are forced on the world by men who simply cannot bear the pain of living with what is. Creators care nothing for their systems except that they be unique. If Hitler had been born in Nazi Germany he wouldn’t have been content to enjoy the atmosphere.
    Leonard Cohen (b. 1934)