Spherical Multipole Moments - Spherical Multipole Moments of A Point Charge

Spherical Multipole Moments of A Point Charge

The electric potential due to a point charge located at is given by


\Phi(\mathbf{r}) =
\frac{q}{4\pi\varepsilon} \frac{1}{R} =
\frac{q}{4\pi\varepsilon}
\frac{1}{\sqrt{r^{2} + r^{\prime 2} - 2 r^{\prime} r \cos \gamma}}.

where is the distance between the charge position and the observation point and is the angle between the vectors and . If the radius of the observation point is greater than the radius of the charge, we may factor out 1/r and expand the square root in powers of using Legendre polynomials


\Phi(\mathbf{r}) =
\frac{q}{4\pi\varepsilon r} \sum_{l=0}^{\infty}
\left( \frac{r^{\prime}}{r} \right)^{l} P_{l}(\cos \gamma )

This is exactly analogous to the axial multipole expansion.

We may express in terms of the coordinates of the observation point and charge position using the spherical law of cosines (Fig. 2)


\cos \gamma =
\cos \theta \cos \theta^{\prime} +
\sin \theta \sin \theta^{\prime} \cos(\phi - \phi^{\prime})

Substituting this equation for into the Legendre polynomials and factoring the primed and unprimed coordinates yields the important formula known as the spherical harmonic addition theorem


P_{l}(\cos \gamma) = \frac{4\pi}{2l + 1} \sum_{m=-l}^{l}
Y_{lm}(\theta, \phi) Y_{lm}^{*}(\theta^{\prime}, \phi^{\prime})

where the functions are the spherical harmonics. Substitution of this formula into the potential yields


\Phi(\mathbf{r}) =
\frac{q}{4\pi\varepsilon r} \sum_{l=0}^{\infty}
\left( \frac{r^{\prime}}{r} \right)^{l}
\left( \frac{4\pi}{2l+1} \right)
\sum_{m=-l}^{l}
Y_{lm}(\theta, \phi) Y_{lm}^{*}(\theta^{\prime}, \phi^{\prime})

which can be written as


\Phi(\mathbf{r}) =
\frac{1}{4\pi\varepsilon}
\sum_{l=0}^{\infty} \sum_{m=-l}^{l}
\left( \frac{Q_{lm}}{r^{l+1}} \right)
\sqrt{\frac{4\pi}{2l+1}} Y_{lm}(\theta, \phi)

where the multipole moments are defined


Q_{lm} \ \stackrel{\mathrm{def}}{=}\
q \left( r^{\prime} \right)^{l}
\sqrt{\frac{4\pi}{2l+1}}
Y_{lm}^{*}(\theta^{\prime}, \phi^{\prime}).

As with axial multipole moments, we may also consider the case when the radius of the observation point is less than the radius of the charge. In that case, we may write


\Phi(\mathbf{r}) =
\frac{q}{4\pi\varepsilon r^{\prime}} \sum_{l=0}^{\infty}
\left( \frac{r}{r^{\prime}} \right)^{l}
\left( \frac{4\pi}{2l+1} \right)
\sum_{m=-l}^{l}
Y_{lm}(\theta, \phi) Y_{lm}^{*}(\theta^{\prime}, \phi^{\prime})

which can be written as


\Phi(\mathbf{r}) =
\frac{1}{4\pi\varepsilon}
\sum_{l=0}^{\infty} \sum_{m=-l}^{l} I_{lm} r^{l}
\sqrt{\frac{4\pi }{2l+1}}
Y_{lm}(\theta, \phi)

where the interior spherical multipole moments are defined as the complex conjugate of irregular solid harmonics


I_{lm} \ \stackrel{\mathrm{def}}{=}\ \frac{q}{\left( r^{\prime} \right)^{l+1}}
\sqrt{\frac{4\pi }{2l+1}}
Y_{lm}^{*}(\theta^{\prime}, \phi^{\prime})

The two cases can be subsumed in a single expression if and are defined to be the lesser and greater, respectively, of the two radii and ; the potential of a point charge then takes the form, which is sometimes referred to as Laplace expansion


\Phi(\mathbf{r}) =
\frac{q}{4\pi\varepsilon} \sum_{l=0}^{\infty}
\frac{r_<^{l}}{r_>^{l+1}}
\left( \frac{4\pi}{2l+1} \right)
\sum_{m=-l}^{l}
Y_{lm}(\theta, \phi) Y_{lm}^{*}(\theta^{\prime}, \phi^{\prime})

Read more about this topic:  Spherical Multipole Moments

Famous quotes containing the words moments, point and/or charge:

    The essence of the modern state is that the universal be bound up with the complete freedom of its particular members and with private well-being, that thus the interests of family and civil society must concentrate themselves on the state.... It is only when both these moments subsist in their strength that the state can be regarded as articulated and genuinely organized.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    In my state, on the basis of the separate but equal doctrine, we have made enormous strides over the years in the education of both races. Personally, I think it would have been sounder judgment to allow that progress to continue through the process of natural evolution. However, there is no point crying about spilt milk.
    Lyndon Baines Johnson (1908–1973)

    Carlyle must undoubtedly plead guilty to the charge of mannerism. He not only has his vein, but his peculiar manner of working it. He has a style which can be imitated, and sometimes is an imitator of himself.
    Henry David Thoreau (1817–1862)