Speed of Sound - Effect of Frequency and Gas Composition

Effect of Frequency and Gas Composition

The medium in which a sound wave is travelling does not always respond adiabatically, and as a result the speed of sound can vary with frequency.

The limitations of the concept of speed of sound due to extreme attenuation are also of concern. The attenuation which exists at sea level for high frequencies applies to successively lower frequencies as atmospheric pressure decreases, or as the mean free path increases. For this reason, the concept of speed of sound (except for frequencies approaching zero) progressively loses its range of applicability at high altitudes.: The standard equations for the speed of sound apply with reasonable accuracy only to situations in which the wavelength of the soundwave is considerably longer than the mean free path of molecules in a gas.

The molecular composition of the gas contributes both as the mass (M) of the molecules, and their heat capacities, and so both have an influence on speed of sound. In general, at the same molecular mass, monatomic gases have slightly higher sound speeds (over 9% higher) because they have a higher (5/3 = 1.66...) than diatomics do (7/5 = 1.4). Thus, at the same molecular mass, the sound speed of a monatomic gas goes up by a factor of

= 1.091...

This gives the 9% difference, and would be a typical ratio for sound speeds at room temperature in helium vs. deuterium, each with a molecular weight of 4. Sound travels faster in helium than deuterium because adiabatic compression heats helium more, since the helium molecules can store heat energy from compression only in translation, but not rotation. Thus helium molecules (monatomic molecules) travel faster in a sound wave and transmit sound faster. (Sound generally travels at about 70% of the mean molecular speed in gases).

Note that in this example we have assumed that temperature is low enough that heat capacities are not influenced by molecular vibration (see heat capacity). However, vibrational modes simply cause gammas which decrease toward 1, since vibration modes in a polyatomic gas gives the gas additional ways to store heat which do not affect temperature, and thus do not affect molecular velocity and sound velocity. Thus, the effect of higher temperatures and vibrational heat capacity acts to increase the difference between sound speed in monatomic vs. polyatomic molecules, with the speed remaining greater in monatomics.

Read more about this topic:  Speed Of Sound

Famous quotes containing the words effect of, effect, frequency, gas and/or composition:

    Worldly faces never look so worldly as at a funeral. They have the same effect of grating incongruity as the sound of a coarse voice breaking the solemn silence of night.
    George Eliot [Mary Ann (or Marian)

    Whenever any form of government shall become destructive of these ends, it is the right of the people to alter or to abolish it, & to institute new government, laying it’s foundation on such principles & organising it’s powers in such form, as to them shall seem most likely to effect their safety & happiness.
    Thomas Jefferson (1743–1826)

    The frequency of personal questions grows in direct proportion to your increasing girth. . . . No one would ask a man such a personally invasive question as “Is your wife having natural childbirth or is she planning to be knocked out?” But someone might ask that of you. No matter how much you wish for privacy, your pregnancy is a public event to which everyone feels invited.
    Jean Marzollo (20th century)

    ... when I awake in the middle of the night, since I knew not where I was, I did not even know at first who I was; I only had in the first simplicity the feeling of existing as it must quiver in an animal.... I spent one second above the centuries of civilization, and the confused glimpse of the gas lamps, then of the shirts with turned-down collars, recomposed, little by little, the original lines of my self.
    Marcel Proust (1871–1922)

    I live in the angle of a leaden wall, into whose composition was poured a little alloy of bell-metal. Often, in the repose of my mid-day, there reaches my ears a confused tintinnabulum from without. It is the noise of my contemporaries.
    Henry David Thoreau (1817–1862)