In homological algebra and algebraic topology, a spectral sequence is a means of computing homology groups by taking successive approximations. Spectral sequences are a generalization of exact sequences, and since their introduction by Jean Leray (1946), they have become an important research tool, particularly in homotopy theory.
Read more about Spectral Sequence: Discovery and Motivation, Formal Definition, Exact Couples, Visualization, Convergence, Degeneration, and Abutment, Further Examples
Famous quotes containing the words spectral and/or sequence:
“How does one kill fear, I wonder? How do you shoot a spectre through the heart, slash off its spectral head, take it by its spectral throat?”
—Joseph Conrad (18571924)
“It isnt that you subordinate your ideas to the force of the facts in autobiography but that you construct a sequence of stories to bind up the facts with a persuasive hypothesis that unravels your historys meaning.”
—Philip Roth (b. 1933)