Specific Orbital Energy

In the gravitational two-body problem, the specific orbital energy (or vis-viva energy) of two orbiting bodies is the constant sum of their mutual potential energy and their total kinetic energy, divided by the reduced mass. According to the orbital energy conservation equation (also referred to as vis-viva equation), it does not vary with time:

where

  • is the relative orbital speed;
  • is the orbital distance between the bodies;
  • is the sum of the standard gravitational parameters of the bodies;
  • is the specific relative angular momentum in the sense of relative angular momentum divided by the reduced mass;
  • is the orbital eccentricity;
  • is the semi-major axis.

It is expressed in J/kg = m2s−2 or MJ/kg = km2s−2. For an elliptical orbit the specific orbital energy is the negative of the additional energy required to accelerate a mass of one kilogram to escape velocity (parabolic orbit). For a hyperbolic orbit, it is equal to the excess energy compared to that of a parabolic orbit. In this case the specific orbital energy is also referred to as characteristic energy.

Read more about Specific Orbital Energy:  Equation Forms For Different Orbits, Rate of Change, Additional Energy, Applying Thrust, Earth Orbits

Famous quotes containing the words specific and/or energy:

    In effect, to follow, not to force the public inclination; to give a direction, a form, a technical dress, and a specific sanction, to the general sense of the community, is the true end of legislature.
    Edmund Burke (1729–1797)

    There are no accidents, only nature throwing her weight around. Even the bomb merely releases energy that nature has put there. Nuclear war would be just a spark in the grandeur of space. Nor can radiation “alter” nature: she will absorb it all. After the bomb, nature will pick up the cards we have spilled, shuffle them, and begin her game again.
    Camille Paglia (b. 1947)