Band Matrix
An important special type of sparse matrices is band matrix, defined as follows. The lower bandwidth of a matrix A is the smallest number p such that the entry aij vanishes whenever i > j + p. Similarly, the upper bandwidth is the smallest p such that aij = 0 whenever i < j − p (Golub & Van Loan 1996, §1.2.1). For example, a tridiagonal matrix has lower bandwidth 1 and upper bandwidth 1. As another example, the following sparse matrix has lower and upper bandwidth both equal to 3. Notice that zeros are represented with dots.
Matrices with reasonably small upper and lower bandwidth are known as band matrices and often lend themselves to simpler algorithms than general sparse matrices; or one can sometimes apply dense matrix algorithms and gain efficiency simply by looping over a reduced number of indices.
By rearranging the rows and columns of a matrix A it may be possible to obtain a matrix A’ with a lower bandwidth. A number of algorithms are designed for bandwidth minimization.
Read more about this topic: Sparse Vector
Famous quotes containing the words band and/or matrix:
“The band waked me with a serenade. How they improve! A fine band and what a life in a regiment! Their music is better than food and clothing to give spirit to the men.”
—Rutherford Birchard Hayes (18221893)
“In all cultures, the family imprints its members with selfhood. Human experience of identity has two elements; a sense of belonging and a sense of being separate. The laboratory in which these ingredients are mixed and dispensed is the family, the matrix of identity.”
—Salvador Minuchin (20th century)