Space Shuttle - Mission Profile - Launch

Launch

See also: Space shuttle launch countdown and Space shuttle launch commit criteria

All Space Shuttle missions were launched from Kennedy Space Center (KSC). The weather criteria used for launch included, but were not limited to: precipitation, temperatures, cloud cover, lightning forecast, wind, and humidity. The Shuttle was not launched under conditions where it could have been struck by lightning. Aircraft are often struck by lightning with no adverse effects because the electricity of the strike is dissipated through its conductive structure and the aircraft is not electrically grounded. Like most jet airliners, the Shuttle was mainly constructed of conductive aluminum, which would normally shield and protect the internal systems. However, upon liftoff the Shuttle sent out a long exhaust plume as it ascended, and this plume could have triggered lightning by providing a current path to ground. The NASA Anvil Rule for a Shuttle launch stated that an anvil cloud could not appear within a distance of 10 nautical miles. The Shuttle Launch Weather Officer monitored conditions until the final decision to scrub a launch was announced. In addition, the weather conditions had to be acceptable at one of the Transatlantic Abort Landing sites (one of several Space Shuttle abort modes) to launch as well as the solid rocket booster recovery area. While the Shuttle might have safely endured a lightning strike, a similar strike caused problems on Apollo 12, so for safety NASA chose not to launch the Shuttle if lightning was possible (NPR8715.5).

Historically, the Shuttle was not launched if its flight would run from December to January (a year-end rollover or YERO). Its flight software, designed in the 1970s, was not designed for this, and would require the orbiter's computers be reset through a change of year, which could cause a glitch while in orbit. In 2007, NASA engineers devised a solution so Shuttle flights could cross the year-end boundary.

On the day of a launch, after the final hold in the countdown at T-minus 9 minutes, the Shuttle went through its final preparations for launch, and the countdown was automatically controlled by the Ground Launch Sequencer (GLS), software at the Launch Control Center, which stopped the count if it sensed a critical problem with any of the Shuttle's onboard systems. The GLS handed off the count to the Shuttle's on-board computers at T minus 31 seconds, in a process called auto sequence start.

At T-minus 16 seconds, the massive sound suppression system (SPS) began to drench the Mobile Launcher Platform (MLP) and SRB trenches with 350,000 US gallons (1,300 m3) of water to protect the Orbiter from damage by acoustical energy and rocket exhaust reflected from the flame trench and MLP during lift off (NASA article).

At T-minus 10 seconds, hydrogen igniters were activated under each engine bell to quell the stagnant gas inside the cones before ignition. Failure to burn these gases could trip the onboard sensors and create the possibility of an overpressure and explosion of the vehicle during the firing phase. The main engine turbopumps also began charging the combustion chambers with liquid hydrogen and liquid oxygen at this time. The computers reciprocated this action by allowing the redundant computer systems to begin the firing phase.

The three main engines (SSMEs) started at T-minus 6.6 seconds. The main engines ignited sequentially via the Shuttle's general purpose computers (GPCs) at 120 millisecond intervals. The GPCs required that the engines reach 90 percent of their rated performance to complete the final gimbal of the main engine nozzles to liftoff configuration. When the SSMEs started, water from the sound suppression system flashed into a large volume of steam that shot southward. All three SSMEs had to reach the required 100 percent thrust within three seconds, otherwise the onboard computers would initiate an RSLS abort. If the onboard computers verified normal thrust buildup, at T minus 0 seconds, the 8 pyrotechnic nuts holding the vehicle to the pad were detonated and the SRBs were ignited. At this point the vehicle was committed to liftoff, as the SRBs could not be turned off once ignited. The plume from the solid rockets exited the flame trench in a northward direction at near the speed of sound, often causing a rippling of shockwaves along the actual flame and smoke contrails. At ignition, the GPCs mandated the firing sequences via the Master Events Controller, a computer program integrated with the Shuttle's four redundant computer systems. There were extensive emergency procedures (abort modes) to handle various failure scenarios during ascent. Many of these concerned SSME failures, since that was the most complex and highly stressed component. After the Challenger disaster, there were extensive upgrades to the abort modes.

After the main engines started, but while the solid rocket boosters were still bolted to the pad, the offset thrust from the Shuttle's three main engines caused the entire launch stack (boosters, tank and Shuttle) to pitch down about 2 m at cockpit level. This motion was called the "nod", or "twang" in NASA jargon. As the boosters flexed back into their original shape, the launch stack pitched slowly back upright. This took approximately six seconds. At the point when it was perfectly vertical, the boosters ignited and the launch commenced. The Johnson Space Center's Mission Control Center assumed control of the flight once the SRBs had cleared the launch tower.

Shortly after clearing the tower, the Shuttle began a combined roll, pitch and yaw maneuver that positioned the orbiter head down, with wings level and aligned with the launch pad. The Shuttle flew upside down during the ascent phase. This orientation allowed a trim angle of attack that was favorable for aerodynamic loads during the region of high dynamic pressure, resulting in a net positive load factor, as well as providing the flight crew with use of the ground as a visual reference. The vehicle climbed in a progressively flattening arc, accelerating as the weight of the SRBs and main tank decreased. To achieve low orbit requires much more horizontal than vertical acceleration. This was not visually obvious, since the vehicle rose vertically and was out of sight for most of the horizontal acceleration. The near circular orbital velocity at the 380 kilometers (236 mi) altitude of the International Space Station is 7.68 kilometers per second or 27,650 km/h (17,180 mph), roughly equivalent to Mach 23 at sea level. As the International Space Station orbits at an inclination of 51.6 degrees, missions going there must set orbital inclination to the same value in order to rendezvous with the station.

Around a point called Max Q, where the aerodynamic forces are at their maximum, the main engines were temporarily throttled back to 72 percent to avoid over-speeding and hence overstressing the Shuttle, particularly in vulnerable areas such as the wings. At this point, a phenomenon known as the Prandtl-Glauert singularity occurred, where condensation clouds formed during the vehicle's transition to supersonic speed.

A few seconds later, after the shuttle had gained more altitude and reached a region of lower atmospheric pressure, this dangerous point is passed. At T+70 seconds the main engines throttled up to their maximum cruise thrust of 104% rated thrust.

At T+126 seconds after launch, pyrotechnic fasteners released the SRBs and small separation rockets pushed them laterally away from the vehicle. The SRBs parachuted back to the ocean to be reused. The Shuttle then began accelerating to orbit on the main engines. The vehicle at that point in the flight had a thrust-to-weight ratio of less than one – the main engines actually had insufficient thrust to exceed the force of gravity, and the vertical speed given to it by the SRBs temporarily decreased. However, as the burn continued, the weight of the propellant decreased and the thrust-to-weight ratio exceeded 1 again and the ever-lighter vehicle then continued to accelerate towards orbit.

The vehicle continued to climb and take on a somewhat nose-up angle to the horizon – it used the main engines to gain and then maintain altitude while it accelerated horizontally towards orbit. At about five and three-quarter minutes into ascent, the orbiter's direct communication links with the ground began to fade, at which point it rolled heads up to reroute its communication links to the Tracking and Data Relay Satellite system.

Finally, in the last tens of seconds of the main engine burn, the mass of the vehicle was low enough that the engines had to be throttled back to limit vehicle acceleration to 3 g (29.34 m/s²), largely for astronaut comfort. At approximately eight minutes post launch, the main engines were shut down.

The main engines were shut down before complete depletion of propellant, as running dry would have destroyed the engines. The oxygen supply was terminated before the hydrogen supply, as the SSMEs reacted unfavorably to other shutdown modes. (Liquid oxygen has a tendency to react violently, and supports combustion when it encounters hot engine metal.) The external tank was released by firing pyrotechnic fasteners, largely burning up in the atmosphere, though some fragments fell into the ocean, in either the Indian Ocean or the Pacific Ocean depending on launch profile. The sealing action of the tank plumbing and lack of pressure relief systems on the external tank helped it break up in the lower atmosphere. After the foam burned away during re-entry, the heat caused a pressure buildup in the remaining liquid oxygen and hydrogen until the tank exploded. This ensured that any pieces that fell back to Earth were small.

To prevent the Shuttle from following the external tank back into the lower atmosphere, the Orbital maneuvering system (OMS) engines were fired to raise the perigee higher into the upper atmosphere. On some missions (e.g., missions to the ISS), the OMS engines were also used while the main engines were still firing. The reason for putting the orbiter on a path that brought it back to Earth was not just for external tank disposal but also one of safety: if the OMS malfunctioned, or the cargo bay doors could not open for some reason, the Shuttle was already on a path to return to earth for an emergency abort landing.

Read more about this topic:  Space Shuttle, Mission Profile

Famous quotes containing the word launch:

    Now launch the small ship, now as the body dies
    and life departs, launch out, the fragile soul
    in the fragile ship of courage, the ark of faith
    with its store of food and little cooking pans
    and change of clothes,
    —D.H. (David Herbert)

    I had often stood on the banks of the Concord, watching the lapse of the current, an emblem of all progress, following the same law with the system, with time, and all that is made ... and at last I resolved to launch myself on its bosom and float whither it would bear me.
    Henry David Thoreau (1817–1862)