Connection To Intuitionistic Logic
The combinators K and S correspond to two well-known axioms of sentential logic:
AK: A (B A),
AS: (A (B C)) ((A B) (A C)).
Function application corresponds to the rule modus ponens:
MP: from A and A B, infer B.
The axioms AK and AS, and the rule MP are complete for the implicational fragment of intuitionistic logic. In order for combinatory logic to have as a model:
- The implicational fragment of classical logic, would require the combinatory analog to the law of excluded middle, e.g., Peirce's law;
- Complete classical logic, would require the combinatory analog to the sentential axiom F A.
Read more about this topic: SKI Combinator Calculus
Famous quotes containing the words connection and/or logic:
“Much is made of the accelerating brutality of young peoples crimes, but rarely does our concern for dangerous children translate into concern for children in danger. We fail to make the connection between the use of force on children themselves, and violent antisocial behavior, or the connection between watching father batter mother and the child deducing a link between violence and masculinity.”
—Letty Cottin Pogrebin (20th century)
“The logic of worldly success rests on a fallacy: the strange error that our perfection depends on the thoughts and opinions and applause of other men! A weird life it is, indeed, to be living always in somebody elses imagination, as if that were the only place in which one could at last become real!”
—Thomas Merton (19151968)