Formal Definition
Given a labelled state transition system (S, Λ, →), a simulation relation is a binary relation R over S (i.e. R ⊆ S × S) such that for every pair of elements p, q ∈ S, if (p,q)∈ R then for all α ∈ Λ, and for all p' ∈ S,
implies that there is a q' ∈ S such that
and (p',q') ∈ R.
Equivalently, in terms of relational composition:
Given two states p and q in S, q simulates p, written p ≤ q if there is a simulation R such that (p, q) ∈ R. The relation ≤ is a preorder, and is usually called the simulation preorder. It is the largest simulation relation over a given transition system.
Two states p and q are said to be similar, written p ≤≥ q, if p simulates q and q simulates p. Similarity is an equivalence relation, but it is coarser than bisimilarity.
Read more about this topic: Simulation Preorder
Famous quotes containing the words formal and/or definition:
“It is in the nature of allegory, as opposed to symbolism, to beg the question of absolute reality. The allegorist avails himself of a formal correspondence between ideas and things, both of which he assumes as given; he need not inquire whether either sphere is real or whether, in the final analysis, reality consists in their interaction.”
—Charles, Jr. Feidelson, U.S. educator, critic. Symbolism and American Literature, ch. 1, University of Chicago Press (1953)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)