Signed Distance Function - Definition

Definition

If (X, d) is a metric space, the signed distance function f is defined by

f(x)=
\begin{cases} d(x, \Omega^c) & \mbox{ if } x\in\Omega \\ -d(x, \Omega)& \mbox{ if } x\in\Omega^c
\end{cases}

where

and 'inf' denotes the infimum.


Algorithms for calculating the signed distance function include the efficient fast marching method and the more general but slower level set method.

Signed distance functions are applied for example in computer vision.

Read more about this topic:  Signed Distance Function

Famous quotes containing the word definition:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)