Signal Integrity - History

History

Signal integrity primarily involves the electrical performance of the wires and other packaging structures used to move signals about within an electronic product. Such performance is a matter of basic physics and as such has remained relatively unchanged since the inception of electronic signaling. The first Transatlantic telegraph cable suffered from severe signal integrity problems, and analysis of the problems yielded many of the mathematical tools still used today to analyze signal integrity problems, such as the telegrapher's equations. Products as old as the Western Electric crossbar telephone exchange (circa 1940), based on the wire-spring relay, suffered almost all the effects seen today - the ringing, crosstalk, ground bounce, and power supply noise that plague modern digital products.

On printed circuit boards, signal integrity became a serious concern when the transition (rise and fall) times of signals started to become comparable to the propagation time across the board. Very roughly speaking, this typically happens when system speeds exceed a few tens of MHz. At first, only a few of the most important, or highest speed, signals needed detailed analysis or design. As speeds increased, a larger and larger fraction of signals needed SI analysis and design practices. In modern (> 100 MHz) circuit designs, essentially all signals must be designed with SI in mind.

For ICs, SI analysis became necessary as an effect of reduced design rules. In the early days of the modern VLSI era, digital chip circuit design and layout were manual processes. The use of abstraction and the application of automatic synthesis techniques have since allowed designers to express their designs using high-level languages and apply an automated design process to create very complex designs, ignoring the electrical characteristics of the underlying circuits to a large degree. However, scaling trends (see Moore's law) brought electrical effects back to the forefront in recent technology nodes. With scaling of technology below 0.25 µm, the wire delays have become comparable or even greater than the gate delays. As a result the wire delays needed to be considered to achieve timing closure. In nanometer technologies at 0.13 µm and below, unintended interactions between signals (e.g. crosstalk) became an important consideration for digital design. At these technology nodes, the performance and correctness of a design cannot be assured without considering noise effects.

Most of this article is about Si in relation to modern electronic technology - notably the use integrated circuits and printed circuit board technology. Nevertheless, the principles of SI are not exclusive to the signalling technology used. SI existed long before the advent of either technology, and will do so as long as electronic communications persist.

Read more about this topic:  Signal Integrity

Famous quotes containing the word history:

    History ... is, indeed, little more than the register of the crimes, follies, and misfortunes of mankind.
    But what experience and history teach is this—that peoples and governments have never learned anything from history, or acted on principles deduced from it.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    ... that there is no other way,
    That the history of creation proceeds according to
    Stringent laws, and that things
    Do get done in this way, but never the things
    We set out to accomplish and wanted so desperately
    To see come into being.
    John Ashbery (b. 1927)

    The greatest horrors in the history of mankind are not due to the ambition of the Napoleons or the vengeance of the Agamemnons, but to the doctrinaire philosophers. The theories of the sentimentalist Rousseau inspired the integrity of the passionless Robespierre. The cold-blooded calculations of Karl Marx led to the judicial and business-like operations of the Cheka.
    Aleister Crowley (1875–1947)