Shigella - Pathogenesis

Pathogenesis

Shigella infection is typically via ingestion (fecal–oral contamination); depending on age and condition of the host, less than 100 bacterial cells can be enough to cause an infection. Shigella causes dysentery that results in the destruction of the epithelial cells of the intestinal mucosa in the cecum and rectum. Some strains produce enterotoxin and shiga toxin, similar to the verotoxin of E. coli O157:H7 and other verotoxin-producing Escherichia coli. Both shiga toxin and verotoxin are associated with causing hemolytic uremic syndrome. As noted above, these supposed E. coli strains are at least in part actually more closely related to Shigella than to the "typical" E. coli.

Shigella invade the host through the M-cells in the gut epithelia of the small intestine, as they cannot enter directly through the epithelial cells. Using a Type III secretion system acting as a biological syringe, the bacterium injects IpaD protein into cells, triggering bacterial invasion and the subsequent lysis of vacuolar membranes using IpaB and IpaC proteins. It uses a mechanism for its motility by which its IcsA protein triggers actin polymerization in the host cell (via N-WASP recruitment of Arp2/3 complexes) in a "rocket" propulsion fashion for cell-to-cell spread. The most common symptoms are diarrhea, fever, nausea, vomiting, stomach cramps and flatulence. The stool may contain blood, mucus, or pus. In rare cases, young children may have seizures. Symptoms can take as long as a week to show up, but most often begin two to four days after ingestion. Symptoms usually last for several days, but can last for weeks. Shigella is implicated as one of the pathogenic causes of reactive arthritis worldwide.

Each of the Shigella genomes includes a virulence plasmid that encodes conserved primary virulence determinants. The Shigella chromosomes share most of their genes with those of E. coli K12 strain MG1655.

Read more about this topic:  Shigella