Sensitivity Analysis - Settings and Constraints

Settings and Constraints

The choice of method of sensitivity analysis is typically dictated by a number of problem constraints or settings. Some of the most common are:

  • Computational expense: Sensitivity analysis is almost always performed by running the model a (possibly large) number of times, i.e. a sampling-based approach. This can be a significant problem when,
    • A single run of the model takes a significant amount of time (minutes, hours or longer). This is not unusual with very complex models.
    • The model has a large number of uncertain inputs. Sensitivity analysis is essentially the exploration of the multidimensional input space, which grows exponentially in size with the number of inputs. See the curse of dimensionality.
Computational expense is a problem in many practical sensitivity analyses. Some methods of reducing computational expense include the use of emulators (for large models), and screening methods (for reducing the dimensionality of the problem).
  • Correlated inputs: Most common sensitivity analysis methods assume independence between model inputs, but sometimes inputs can be strongly correlated. This is still an immature field of research and definitive methods have yet to be established.
  • Nonlinearity: Some sensitivity analysis approaches, such as those based on linear regression, can inaccurately measure sensitivity when the model response is nonlinear with respect to its inputs. In such cases, variance-based measures are more appropriate.
  • Model interactions: Interactions occur when the perturbation of two or more inputs simultaneously causes variation in the output greater than that of varying each of the inputs alone. Such interactions are present in any model that is non-additive, but will be neglected by methods such as scatterplots and one-at-a-time perturbations. The effect of interactions can be measured by the total-order sensitivity index.
  • Multiple outputs: Virtually all sensitivity analysis methods consider a single univariate model output, yet many models output a large number of possibly spatially or time-dependent data. Note that this does not preclude the possibility of performing different sensitivity analyses for each output of interest. However, for models in which the outputs are correlated, the sensitivity measures can be hard to interpret.
  • Given data: While in many cases the practitioner has access to the model, in some instances a sensitivity analysis must be performed with "given data", i.e. where the sample points (the values of the model inputs for each run) cannot be chosen by the analyst. This may occur when a sensitivity analysis has to performed retrospectively, perhaps using data from an optimisation or uncertainty analysis, or when data comes from a discrete source.

Read more about this topic:  Sensitivity Analysis

Famous quotes containing the word constraints:

    Play is a major avenue for learning to manage anxiety. It gives the child a safe space where she can experiment at will, suspending the rules and constraints of physical and social reality. In play, the child becomes master rather than subject.... Play allows the child to transcend passivity and to become the active doer of what happens around her.
    Alicia F. Lieberman (20th century)