Sectional Curvature - Toponogov's Theorem

Toponogov's Theorem

Toponogov's theorem affords a characterization of sectional curvature in terms of how "fat" geodesic triangles appear when compared to their Euclidean counterparts. The basic intuition is that, if a space is positively curved, then the edge of a triangle opposite some given vertex will tend to bend away from that vertex, whereas if a space is negatively curved, then the opposite edge of the triangle will tend to bend towards the vertex.

More precisely, let M be a complete Riemannian manifold, and let xyz be a geodesic triangle in M (a triangle each of whose sides is a length-minimizing geodesic). Finally, let m be the midpoint of the geodesic xy. If M has non-negative curvature, then for all sufficiently small triangles

where d is the distance function on M. The case of equality holds precisely when the curvature of M vanishes, and the right-hand side represents the distance from a vertex to the opposite side of a geodesic triangle in Euclidean space having the same side-lengths as the triangle xyz. This makes precise the sense in which triangles are "fatter" in positively curved spaces. In non-positively curved spaces, the inequality goes the other way:

If tighter bounds on the sectional curvature are known, then this property generalizes to give a comparison theorem between geodesic triangles in M and those in a suitable simply connected space form; see Toponogov's theorem. Simple consequences of the version stated here are:

  • A complete Riemannian manifold has non-negative sectional curvature if and only if the function is 1-concave for all points p.
  • A complete simply connected Riemannian manifold has non-positive sectional curvature if and only if the function is 1-convex.

Read more about this topic:  Sectional Curvature

Famous quotes containing the word theorem:

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)