Definable Functions of Second-order Arithmetic
The first-order functions that are provably total in second-order arithmetic are precisely the same as those representable in system F (Girard et al., 1987, pp. 122–123). Almost equivalently, system F is the theory of functionals corresponding to second-order arithmetic in a manner parallel to how Gödel's system T corresponds to first-order arithmetic in the Dialectica interpretation.
Read more about this topic: Second-order Arithmetic
Famous quotes containing the words functions and/or arithmetic:
“Let us stop being afraid. Of our own thoughts, our own minds. Of madness, our own or others. Stop being afraid of the mind itself, its astonishing functions and fandangos, its complications and simplifications, the wonderful operation of its machinerymore wonderful because it is not machinery at all or predictable.”
—Kate Millett (b. 1934)
“Tis no extravagant arithmetic to say, that for every ten jokes,thou hast got an hundred enemies; and till thou hast gone on, and raised a swarm of wasps about thine ears, and art half stung to death by them, thou wilt never be convinced it is so.”
—Laurence Sterne (17131768)