Schwarz Lemma - Proof

Proof

The proof is a straightforward application of the maximum modulus principle on the function

g(z) = \begin{cases} \frac{f(z)}{z}\, & \mbox{if } z \neq 0 \\ f'(0) & \mbox{if } z = 0,
\end{cases}

which is holomorphic on the whole of D, including at the origin (because f is differentiable at the origin and fixes zero). Now if Dr = {z : |z| ≤ r} denotes the closed disk of radius r centered at the origin, then the maximum modulus principle implies that, for r < 1, given any z in Dr, there exists zr on the boundary of Dr such that

As r → 1 we get |g(z)| ≤ 1.

Moreover, suppose that |f(z)| = |z| for some non-zero z in D, or |f′(0)| = 1. Then, |g(z)| = 1 at some point of D. So by the maximum modulus principle, g(z) is equal to a constant a such that |a| = 1. Therefore, f(z) = az, as desired.

Read more about this topic:  Schwarz Lemma

Famous quotes containing the word proof:

    He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,—it is only to be added, that, in that case, he knows them to be small.
    Herman Melville (1819–1891)

    Ah! I have penetrated to those meadows on the morning of many a first spring day, jumping from hummock to hummock, from willow root to willow root, when the wild river valley and the woods were bathed in so pure and bright a light as would have waked the dead, if they had been slumbering in their graves, as some suppose. There needs no stronger proof of immortality. All things must live in such a light. O Death, where was thy sting? O Grave, where was thy victory, then?
    Henry David Thoreau (1817–1862)

    If any doubt has arisen as to me, my country [Virginia] will have my political creed in the form of a “Declaration &c.” which I was lately directed to draw. This will give decisive proof that my own sentiment concurred with the vote they instructed us to give.
    Thomas Jefferson (1743–1826)