Schwarz Lemma - Proof

Proof

The proof is a straightforward application of the maximum modulus principle on the function

g(z) = \begin{cases} \frac{f(z)}{z}\, & \mbox{if } z \neq 0 \\ f'(0) & \mbox{if } z = 0,
\end{cases}

which is holomorphic on the whole of D, including at the origin (because f is differentiable at the origin and fixes zero). Now if Dr = {z : |z| ≤ r} denotes the closed disk of radius r centered at the origin, then the maximum modulus principle implies that, for r < 1, given any z in Dr, there exists zr on the boundary of Dr such that

As r → 1 we get |g(z)| ≤ 1.

Moreover, suppose that |f(z)| = |z| for some non-zero z in D, or |f′(0)| = 1. Then, |g(z)| = 1 at some point of D. So by the maximum modulus principle, g(z) is equal to a constant a such that |a| = 1. Therefore, f(z) = az, as desired.

Read more about this topic:  Schwarz Lemma

Famous quotes containing the word proof:

    Sculpture and painting are very justly called liberal arts; a lively and strong imagination, together with a just observation, being absolutely necessary to excel in either; which, in my opinion, is by no means the case of music, though called a liberal art, and now in Italy placed even above the other two—a proof of the decline of that country.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    It comes to pass oft that a terrible oath, with a swaggering accent sharply twanged off, gives manhood more approbation than ever proof itself would have earned him.
    William Shakespeare (1564–1616)

    There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.
    Herman Melville (1819–1891)