Schur Decomposition - Statement

Statement

The Schur decomposition reads as follows: if A is a n × n square matrix with complex entries, then A can be expressed as

where Q is a unitary matrix (so that its inverse Q−1 is also the conjugate transpose Q* of Q), and U is an upper triangular matrix, which is called a Schur form of A. Since U is similar to A, it has the same multiset of eigenvalues, and since it is triangular, those eigenvalues are the diagonal entries of U.

The Schur decomposition implies that there exists a nested sequence of A-invariant subspaces {0} = V0V1 ⊂ ... ⊂ Vn = Cn, and that there exists an ordered orthonormal basis (for the standard Hermitian form of Cn) such that the first i basis vectors span Vi for each i occurring in the nested sequence. Phrased somewhat differently, the first part says that an operator T on a complex finite-dimensional vector space stabilizes a complete flag (V1,...,Vn).

Read more about this topic:  Schur Decomposition

Famous quotes containing the word statement:

    If we do take statements to be the primary bearers of truth, there seems to be a very simple answer to the question, what is it for them to be true: for a statement to be true is for things to be as they are stated to be.
    —J.L. (John Langshaw)

    A sentence is made up of words, a statement is made in words.... Statements are made, words or sentences are used.
    —J.L. (John Langshaw)

    The parent is the strongest statement that the child hears regarding what it means to be alive and real. More than what we say or do, the way we are expresses what we think it means to be alive. So the articulate parent is less a telling than a listening individual.
    Polly Berrien Berends (20th century)