Schur Decomposition - Statement

Statement

The Schur decomposition reads as follows: if A is a n × n square matrix with complex entries, then A can be expressed as

where Q is a unitary matrix (so that its inverse Q−1 is also the conjugate transpose Q* of Q), and U is an upper triangular matrix, which is called a Schur form of A. Since U is similar to A, it has the same multiset of eigenvalues, and since it is triangular, those eigenvalues are the diagonal entries of U.

The Schur decomposition implies that there exists a nested sequence of A-invariant subspaces {0} = V0V1 ⊂ ... ⊂ Vn = Cn, and that there exists an ordered orthonormal basis (for the standard Hermitian form of Cn) such that the first i basis vectors span Vi for each i occurring in the nested sequence. Phrased somewhat differently, the first part says that an operator T on a complex finite-dimensional vector space stabilizes a complete flag (V1,...,Vn).

Read more about this topic:  Schur Decomposition

Famous quotes containing the word statement:

    I think, therefore I am is the statement of an intellectual who underrates toothaches.
    Milan Kundera (b. 1929)

    Truth is that concordance of an abstract statement with the ideal limit towards which endless investigation would tend to bring scientific belief, which concordance the abstract statement may possess by virtue of the confession of its inaccuracy and one-sidedness, and this confession is an essential ingredient of truth.
    Charles Sanders Peirce (1839–1914)

    Eloquence must be grounded on the plainest narrative. Afterwards, it may warm itself until it exhales symbols of every kind and color, speaks only through the most poetic forms; but first and last, it must still be at bottom a biblical statement of fact.
    Ralph Waldo Emerson (1803–1882)