Schinzel's Hypothesis H - Extension To Include The Goldbach Conjecture

Extension To Include The Goldbach Conjecture

The hypothesis doesn't cover Goldbach's conjecture, but a closely related version (hypothesis HN) does. That requires an extra polynomial F(x), which in the Goldbach problem would just be x, for which

NF(n)

is required to be a prime number, also. This is cited in Halberstam and Richert, Sieve Methods. The conjecture here takes the form of a statement when N is sufficiently large, and subject to the condition

Q(n)(NF(n))

has no fixed divisor > 1. Then we should be able to require the existence of n such that NF(n) is both positive and a prime number; and with all the fi(n) prime numbers.

Not many cases of these conjectures are known; but there is a detailed quantitative theory (Bateman–Horn conjecture).

Read more about this topic:  Schinzel's Hypothesis H

Famous quotes containing the words extension, include and/or conjecture:

    Where there is reverence there is fear, but there is not reverence everywhere that there is fear, because fear presumably has a wider extension than reverence.
    Socrates (469–399 B.C.)

    I thought if war did not include killing, I’d like to see one every year.
    Maya Angelou (b. 1928)

    What these perplexities of my uncle Toby were,—’tis impossible for you to guess;Mif you could,—I should blush ... as an author; inasmuch as I set no small store by myself upon this very account, that my reader has never yet been able to guess at any thing. And ... if I thought you was able to form the least ... conjecture to yourself, of what was to come in the next page,—I would tear it out of my book.
    Laurence Sterne (1713–1768)