Riemannian Manifold - Riemannian Manifolds As Metric Spaces

Riemannian Manifolds As Metric Spaces

A connected Riemannian manifold carries the structure of a metric space whose distance function is the arclength of a minimizing geodesic.

Specifically, let (M,g) be a connected Riemannian manifold. Let c: → M be a parametrized curve in M, which is differentiable with velocity vector c′. The length of c is defined as

By change of variables, the arclength is independent of the chosen parametrization. In particular, a curve → M can be parametrized by its arc length. A curve is parametrized by arclength if and only if for all .

The distance function d : M×M → [0,∞) is defined by

where the infimum extends over all differentiable curves γ beginning at pM and ending at qM.

This function d satisfies the properties of a distance function for a metric space. The only property which is not completely straightforward is to show that d(p,q)=0 implies that p=q. For this property, one can use a normal coordinate system, which also allows one to show that the topology induced by d is the same as the original topology on M.

Read more about this topic:  Riemannian Manifold

Famous quotes containing the word spaces:

    Surely, we are provided with senses as well fitted to penetrate the spaces of the real, the substantial, the eternal, as these outward are to penetrate the material universe. Veias, Menu, Zoroaster, Socrates, Christ, Shakespeare, Swedenborg,—these are some of our astronomers.
    Henry David Thoreau (1817–1862)