In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be a Noetherian local ring with maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then in general n ≥ dim A, and A is defined to be regular if n = dim A.
The appellation regular is justified by the geometric meaning. A point x on a algebraic variety X is nonsingular if and only if the local ring of germs at x is regular. Regular local rings are not related to von Neumann regular rings.
Read more about Regular Local Ring: Characterizations, Examples, Basic Properties, Origin of Basic Notions
Famous quotes containing the words regular, local and/or ring:
“He hung out of the window a long while looking up and down the street. The worlds second metropolis. In the brick houses and the dingy lamplight and the voices of a group of boys kidding and quarreling on the steps of a house opposite, in the regular firm tread of a policeman, he felt a marching like soldiers, like a sidewheeler going up the Hudson under the Palisades, like an election parade, through long streets towards something tall white full of colonnades and stately. Metropolis.”
—John Dos Passos (18961970)
“These native villages are as unchanging as the woman in one of their stories. When she was called before a local justice he asked her age. I have 45 years. But, said the justice, you were forty-five when you appeared before me two years ago. Señor Judge, she replied proudly, drawing herself to her full height, I am not of those who are one thing today and another tomorrow!”
—State of New Mexico, U.S. public relief program (1935-1943)
“The world,this shadow of the soul, or other me, lies wide around. Its attractions are the keys which unlock my thoughts and make me acquainted with myself. I run eagerly into this resounding tumult. I grasp the hands of those next to me, and take my place in the ring to suffer and to work, taught by an instinct, that so shall the dumb abyss be vocal with speech.”
—Ralph Waldo Emerson (18031882)