Regression Toward The Mean - Definition For Simple Linear Regression of Data Points

Definition For Simple Linear Regression of Data Points

This is the definition of regression toward the mean that closely follows Sir Francis Galton's original usage.

Suppose there are n data points {yi, xi}, where i = 1, 2, …, n. We want to find the equation of the regression line, i.e. the straight line

which would provide a “best” fit for the data points. (Note that a straight line may not be the appropriate regression curve for the given data points.) Here the “best” will be understood as in the least-squares approach: such a line that minimizes the sum of squared residuals of the linear regression model. In other words, numbers α and β solve the following minimization problem:

Find, where Q(\alpha,\beta) = \sum_{i=1}^n\hat{\varepsilon}_i^{\,2}
= \sum_{i=1}^n (y_i - \alpha - \beta x_i)^2\

Using simple calculus it can be shown that the values of α and β that minimize the objective function Q are

\begin{align} & \hat\beta = \frac{ \sum_{i=1}^{n} (x_{i}-\bar{x})(y_{i}-\bar{y}) }{ \sum_{i=1}^{n} (x_{i}-\bar{x})^2 } = \frac{ \overline{xy} - \bar{x}\bar{y} }{ \overline{x^2} - \bar{x}^2 } = \frac{ \operatorname{Cov} }{ \operatorname{Var} } = r_{xy} \frac{s_y}{s_x}, \\ & \hat\alpha = \bar{y} - \hat\beta\,\bar{x}, \end{align}

where rxy is the sample correlation coefficient between x and y, sx is the standard deviation of x, and sy is correspondingly the standard deviation of y. Horizontal bar over a variable means the sample average of that variable. For example:

Substituting the above expressions for and into yields fitted values

which yields

This shows the role rxy plays in the regression line of standardized data points.

If −1 < rxy < 1, then we say that the data points exhibit regression toward the mean. In other words, if linear regression is the appropriate model for a set of data points whose sample correlation coefficient is not perfect, then there is regression toward the mean. The predicted (or fitted) standardized value of y is closer to its mean than the standardized value of x is to its mean.

Read more about this topic:  Regression Toward The Mean

Famous quotes containing the words definition, simple, data and/or points:

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)

    A simple and independent mind does not toil at the bidding of any prince.
    Henry David Thoreau (1817–1862)

    To write it, it took three months; to conceive it three minutes; to collect the data in it—all my life.
    F. Scott Fitzgerald (1896–1940)

    We only part to meet again.
    Change, as ye list, ye winds: my heart shall be
    The faithful compass that still points to thee.
    John Gay (1685–1732)