Reflexive Space - Examples

Examples

Every finite-dimensional normed space is reflexive, simply because in this case, the space, its dual and bidual all have the same linear dimension, hence the linear injection J from the definition is bijective, by the rank-nullity theorem.

The Banach space c0 of scalar sequences tending to 0 at infinity, equipped with the supremum norm, is not reflexive. It follows from the general properties below that ℓ1 and ℓ∞ are not reflexive, because ℓ1 is isomorphic to the dual of c0, and ℓ∞ is isomorphic to the dual of ℓ1.

All Hilbert spaces are reflexive, as are the Lp spaces for 1 < p < ∞. More generally: all uniformly convex Banach spaces are reflexive according to the Milman–Pettis theorem. The L1(μ) and L∞(μ) spaces are not reflexive (unless they are finite dimensional, which happens for example when μ is a measure on a finite set). Likewise, the Banach space C of continuous functions on is not reflexive.

The spaces Sp(H) of operators in the Schatten class on a Hilbert space H are uniformly convex, hence reflexive, when 1 < p < ∞. When the dimension of H is infinite, then S1(H) (the trace class) is not reflexive, because it contains a subspace isomorphic to ℓ1, and S(H) = L(H) (the bounded operators) is not reflexive, because it contains a subspace isomorphic to ℓ∞ (in both cases, the subspace can be chosen to be the operators diagonal with respect to a given orthonormal basis of H).

Every finite-dimensional Hausdorff topological vector space is reflexive, because J is bijective by linear algebra, and because there is a unique Hausdorff vector space topology on a finite dimensional vector space.

Montel spaces are reflexive locally convex topological vector spaces.

Every semi-reflexive normed space is reflexive. A (somewhat artificial) example of a semi-reflexive space, not reflexive, is obtained as follows: let Y be an infinite dimensional reflexive Banach space, and let X be the topological vector space (Y, σ(Y, Y ′)), that is, the vector space Y equipped with the weak topology. Then the continuous dual of X is the set Y ′ and bounded subsets of X are norm-bounded, hence the Banach space Y ′ is the strong dual of X. Since Y is reflexive, the continuous dual of X ′ = Y ′ is equal to the image J(X) of X under the canonical embedding J, but the topology on X is not the strong topology β(X, X ′), that is equal to the norm topology of Y.

Read more about this topic:  Reflexive Space

Famous quotes containing the word examples:

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)

    Histories are more full of examples of the fidelity of dogs than of friends.
    Alexander Pope (1688–1744)