Refinement Monoid - Vaught Measures On Boolean Algebras

Vaught Measures On Boolean Algebras

For a Boolean algebra A and a commutative monoid M, a map μ : AM is a measure, if μ(a)=0 if and only if a=0, and μ(a ∨ b)=μ(a)+μ(b) whenever a and b are disjoint (that is, a ∧ b=0), for any a, b in A. We say in addition that μ is a Vaught measure (after Robert Lawson Vaught), or V-measure, if for all c in A and all x,y in M such that μ(c)=x+y, there are disjoint a, b in A such that c=a ∨ b, μ(a)=x, and μ(b)=y.

An element e in a commutative monoid M is measurable (with respect to M), if there are a Boolean algebra A and a V-measure μ : AM such that μ(1)=e---we say that μ measures e. We say that M is measurable, if any element of M is measurable (with respect to M). Of course, every measurable monoid is a conical refinement monoid.

Hans Dobbertin proved in 1983 that any conical refinement monoid with at most ℵ1 elements is measurable. He also proved that any element in an at most countable conical refinement monoid is measured by a unique (up to isomorphism) V-measure on a unique at most countable Boolean algebra. He raised there the problem whether any conical refinement monoid is measurable. This was answered in the negative by Friedrich Wehrung in 1998. The counterexamples can have any cardinality greater than or equal to ℵ2.

Read more about this topic:  Refinement Monoid

Famous quotes containing the word measures:

    However much we may differ in the choice of the measures which should guide the administration of the government, there can be but little doubt in the minds of those who are really friendly to the republican features of our system that one of its most important securities consists in the separation of the legislative and executive powers at the same time that each is acknowledged to be supreme, in the will of the people constitutionally expressed.
    Andrew Jackson (1767–1845)