Refinement Monoid

In mathematics, a refinement monoid is a commutative monoid M such that for any elements a0, a1, b0, b1 of M such that a0+a1=b0+b1, there are elements c00, c01, c10, c11 of M such that a0=c00+c01, a1=c10+c11, b0=c00+c10, and b1=c01+c11.

A commutative monoid M is conical, if x+y=0 implies that x=y=0, for any elements x,y of M.

Read more about Refinement Monoid:  Basic Examples, Vaught Measures On Boolean Algebras, Nonstable K-theory of Von Neumann Regular Rings

Famous quotes containing the word refinement:

    You know that your toddler needed love and approval but he often seemed not to care whether he got it or not and never seemed to know how to earn it. Your pre-school child is positively asking you to tell him what does and does not earn approval, so he is ready to learn any social refinement of being human which you will teach him....He knows now that he wants your love and he has learned how to ask for it.
    Penelope Leach (20th century)