Red Blood Cell - Vertebrate Erythrocytes

Vertebrate Erythrocytes

Erythrocytes consist mainly of hemoglobin, a complex metalloprotein containing heme groups whose iron atoms temporarily bind to oxygen molecules (O2) in the lungs or gills and release them throughout the body. Oxygen can easily diffuse through the red blood cell's cell membrane. Hemoglobin in the erythrocytes also carries some of the waste product carbon dioxide back from the tissues; most waste carbon dioxide, however, is transported back to the pulmonary capillaries of the lungs as bicarbonate (HCO3-) dissolved in the blood plasma. Myoglobin, a compound related to hemoglobin, acts to store oxygen in muscle cells.

The color of erythrocytes is due to the heme group of hemoglobin. The blood plasma alone is straw-colored, but the red blood cells change color depending on the state of the hemoglobin: when combined with oxygen the resulting oxyhemoglobin is scarlet, and when oxygen has been released the resulting deoxyhemoglobin is of a dark red burgundy color, appearing bluish through the vessel wall and skin. Pulse oximetry takes advantage of this color change to directly measure the arterial blood oxygen saturation using colorimetric techniques.

The sequestration of oxygen carrying proteins inside specialized cells (rather than having them dissolved in body fluid) was an important step in the evolution of vertebrates as it allows for less viscous blood, higher concentrations of oxygen, and better diffusion of oxygen from the blood to the tissues. The size of erythrocytes varies widely among vertebrate species; erythrocyte width is on average about 25% larger than capillary diameter and it has been hypothesized that this improves the oxygen transfer from erythrocytes to tissues.

The only known vertebrates without erythrocytes are the crocodile icefishes (family Channichthyidae); they live in very oxygen rich cold water and transport oxygen freely dissolved in their blood. While they do not use hemoglobin any more, remnants of hemoglobin genes can be found in their genome.

Read more about this topic:  Red Blood Cell