Real-time Operating Systems - Scheduling

Scheduling

In typical designs, a task has three states:

  1. Running (executing on the CPU);
  2. Ready (ready to be executed);
  3. Blocked (waiting for an event, I/O for example).

Most tasks are blocked or ready most of the time because generally only one task can run at a time per CPU. The number of items in the ready queue can vary greatly, depending on the number of tasks the system needs to perform and the type of scheduler that the system uses. On simpler non-preemptive but still multitasking systems, a task has to give up its time on the CPU to other tasks, which can cause the ready queue to have a greater number of overall tasks in the ready to be executed state (resource starvation).

Usually the data structure of the ready list in the scheduler is designed to minimize the worst-case length of time spent in the scheduler's critical section, during which preemption is inhibited, and, in some cases, all interrupts are disabled. But the choice of data structure depends also on the maximum number of tasks that can be on the ready list.

If there are never more than a few tasks on the ready list, then a doubly linked list of ready tasks is likely optimal. If the ready list usually contains only a few tasks but occasionally contains more, then the list should be sorted by priority. That way, finding the highest priority task to run does not require iterating through the entire list. Inserting a task then requires walking the ready list until reaching either the end of the list, or a task of lower priority than that of the task being inserted.

Care must be taken not to inhibit preemption during this search. Longer critical sections should be divided into small pieces. If an interrupt occurs that makes a high priority task ready during the insertion of a low priority task, that high priority task can be inserted and run immediately before the low priority task is inserted.

The critical response time, sometimes called the flyback time, is the time it takes to queue a new ready task and restore the state of the highest priority task to running. In a well-designed RTOS, readying a new task will take 3 to 20 instructions per ready-queue entry, and restoration of the highest-priority ready task will take 5 to 30 instructions.

In more advanced systems, real-time tasks share computing resources with many non-real-time tasks, and the ready list can be arbitrarily long. In such systems, a scheduler ready list implemented as a linked list would be inadequate.

Read more about this topic:  Real-time Operating Systems