Rational Number - p-adic Numbers

p-adic Numbers

See also: P-adic Number

In addition to the absolute value metric mentioned above, there are other metrics which turn Q into a topological field:

Let p be a prime number and for any non-zero integer a, let |a|p = pn, where pn is the highest power of p dividing a.

In addition set |0|p = 0. For any rational number a/b, we set |a/b|p = |a|p / |b|p.

Then dp(x,y) = |xy|p defines a metric on Q.

The metric space (Q,dp) is not complete, and its completion is the p-adic number field Qp. Ostrowski's theorem states that any non-trivial absolute value on the rational numbers Q is equivalent to either the usual real absolute value or a p-adic absolute value.

Read more about this topic:  Rational Number

Famous quotes containing the word numbers:

    Publishers are notoriously slothful about numbers, unless they’re attached to dollar signs—unlike journalists, quarterbacks, and felony criminal defendents who tend to be keenly aware of numbers at all times.
    Hunter S. Thompson (b. 1939)