Random Element - Definition

Definition

Let (Ω, ℱ, P) be a probability space, and (E, ℰ) a measurable space. A random element with values in E is a function X: Ω→E which is (ℱ, ℰ)-measurable. That is, a function X such that for any B ∈ ℰ the preimage of B lies in ℱ: {ω: X(ω) ∈ B} ∈ ℱ.

Sometimes random elements with values in are called -valued random variables.

Note if, where are the real numbers, and is its Borel σ-algebra, then the definition of random element is the classical definition of random variable.

The definition of a random element with values in a Banach space is typically understood to utilize the smallest -algebra on B for which every bounded linear functional is measurable. An equivalent definition, in this case, to the above, is that a map, from a probability space, is a random element if is a random variable for every bounded linear functional f, or, equivalently, that is weakly measurable.

Read more about this topic:  Random Element

Famous quotes containing the word definition:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)