Pushforward (differential) - The Differential of A Smooth Map

The Differential of A Smooth Map

Let φ : MN be a smooth map of smooth manifolds. Given some xM, the differential of φ at x is a linear map

from the tangent space of M at x to the tangent space of N at φ(x). The application of dφx to a tangent vector X is sometimes called the pushforward of X by φ. The exact definition of this pushforward depends on the definition one uses for tangent vectors (for the various definitions see tangent space).

If one defines tangent vectors as equivalence classes of curves through x then the differential is given by

Here γ is a curve in M with γ(0) = x. In other words, the pushforward of the tangent vector to the curve γ at 0 is just the tangent vector to the curve φγ at 0.

Alternatively, if tangent vectors are defined as derivations acting on smooth real-valued functions, then the differential is given by

Here XTxM, therefore X is a derivation defined on M and f is a smooth real-valued function on N. By definition, the pushforward of X at a given x in M is in Tφ(x)N and therefore itself is a derivation.

After choosing charts around x and φ(x), F is locally determined by a smooth map

between open sets of Rm and Rn, and dφx has representation (at x)

in the Einstein summation notation, where the partial derivatives are evaluated at the point in U corresponding to x in the given chart.

Extending by linearity gives the following matrix

Thus the differential is a linear transformation, between tangent spaces, associated to the smooth map φ at each point. Therefore, in some chosen local coordinates, it is represented by the Jacobian of the corresponding smooth map from Rm to Rn. In general the differential need not be invertible. If φ is a local diffeomorphism, then the pushforward at x is invertible and its inverse gives the pullback of Tφ(x)N.

The differential is frequently expressed using a variety of other notations such as

It follows from the definition that the differential of a composite is the composite of the differentials (i.e., functorial behaviour). This is the chain rule for smooth maps.

Also, the differential of a local diffeomorphism is a linear isomorphism of tangent spaces.

Read more about this topic:  Pushforward (differential)

Famous quotes containing the words differential, smooth and/or map:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    He stands in warm water
    Soap all over the smooth of his thigh and stomach
    “Gary don’t soap my hair!”
    Mhis eye-sting fear—
    Gary Snyder (b. 1930)

    In my writing I am acting as a map maker, an explorer of psychic areas ... a cosmonaut of inner space, and I see no point in exploring areas that have already been thoroughly surveyed.
    William Burroughs (b. 1914)