Absolutely Continuous Univariate Distributions
A probability density function is most commonly associated with absolutely continuous univariate distributions. A random variable X has density f, where f is a non-negative Lebesgue-integrable function, if:
Hence, if F is the cumulative distribution function of X, then:
and (if f is continuous at x)
Intuitively, one can think of f(x) dx as being the probability of X falling within the infinitesimal interval .
Read more about this topic: Probability Density Function
Famous quotes containing the words absolutely and/or continuous:
“He [Roosevelt] has made some speeches that indicate that he is going quite beyond anything that he advocated when he was in the White House, and has proposed a program which is absolutely impossible to carry out except by a revision of the Constitution.”
—William Howard Taft (18571930)
“I describe family values as responsibility towards others, increase of tolerance, compromise, support, flexibility. And essentially the things I call the silent song of lifethe continuous process of mutual accommodation without which life is impossible.”
—Salvador Minuchin (20th century)