Principles of Mathematical Logic

Principles of Mathematical Logic is the 1950 American translation of the 1938 second edition of David Hilbert's and Wilhelm Ackermann's classic text Grundzüge der theoretischen Logik, on elementary mathematical logic. The 1928 first edition thereof is considered the first elementary text clearly grounded in the formalism now known as first-order logic (FOL). Hilbert and Ackermann also formalized FOL in a way that subsequently achieved canonical status. FOL is now a core formalism of mathematical logic, and is presupposed by contemporary treatments of Peano arithmetic and nearly all treatments of axiomatic set theory.

The 1928 edition included a clear statement of the Entscheidungsproblem (decision problem) for FOL, and also asked whether that logic was complete (i.e., whether all semantic truths of FOL were theorems derivable from the FOL axioms and rules). The first problem was answered in the negative by Alonzo Church in 1936. The second was answered affirmatively by Kurt Gödel in 1929.

The text also touched on set theory and relational algebra as ways of going beyond FOL. Contemporary notation for logic owes more to this text than it does to the notation of Principia Mathematica, long popular in the English speaking world.

Famous quotes containing the words principles of, principles, mathematical and/or logic:

    Custom is our nature.... What are our natural principles but principles of custom?
    Blaise Pascal (1623–1662)

    That, upon the whole, we may conclude that the Christian religion not only was at first attended with miracles, but even at this day cannot be believed by any reasonable person without one. Mere reason is insufficient to convince us of its veracity: And whoever is moved by Faith to assent to it, is conscious of a continued miracle in his own person, which subverts all the principles of his understanding, and gives him a determination to believe what is most contrary to custom and experience.
    David Hume (1711–1776)

    The most distinct and beautiful statement of any truth must take at last the mathematical form.
    Henry David Thoreau (1817–1862)

    We want in every man a long logic; we cannot pardon the absence of it, but it must not be spoken. Logic is the procession or proportionate unfolding of the intuition; but its virtue is as silent method; the moment it would appear as propositions and have a separate value, it is worthless.
    Ralph Waldo Emerson (1803–1882)