Quantum Properties of Measurements
A recent work shows that the properties of a measurement are not revealed by the POVM element corresponding to the measurement, but by its pre-measurement state. This one is the main tool of the retrodictive approach of quantum physics in which we make predictions about state preparations leading to a measurement result. We show, that this state simply corresponds to the normalized POVM element:
We can make predictions about preparations leading to the result 'n' by using an expression similar to Born's rule:
in which is a hermitian and positive operator corresponding to a proposition about the state of the measured system just after its preparation in some a state . Such an approach allows us to determine in which kind of states the system was prepared for leading to the result 'n'.
Thus, the non-classicality of a measurement corresponds to the non-classicality of its pre-measurement state, for which such a notion can be measured by different signatures of non-classicality. The projective character of a measurement can be measured by its projectivity which is the purity of its pre-measurement state:
The measurement is projective when its pre-measurement state is a pure quantum state . Thus, the corresponding POVM element is given by:
where is in fact the detection efficiency of the state, since Born's rule leads to . Therefore, the measurement can be projective but non-ideal, which is an important distinction with the usual definition of projective measurements.
Read more about this topic: POVM
Famous quotes containing the words quantum and/or properties:
“But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.”
—Antonin Artaud (18961948)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)