Potential Game

In game theory, a game is said to be a potential game if the incentive of all players to change their strategy can be expressed using a single global function called the potential function. The concept was proposed in 1973 by Robert W. Rosenthal.

The properties of several types of potential games have since been studied. Games can be either ordinal or cardinal potential games. In cardinal games, the difference in individual payoffs for each player from individually changing one's strategy ceteris paribus has to have the same value as the difference in values for the potential function. In ordinal games, only the signs of the differences have to be the same.

The potential function is a useful tool to analyze equilibrium properties of games, since the incentives of all players are mapped into one function, and the set of pure Nash equilibria can be found by locating the local optima of the potential function. Convergence and finite-time convergence of an iterated game towards a Nash equilibrium can also be understood by studying the potential function.

Read more about Potential Game:  Definition, A Simple Example

Famous quotes containing the words potential and/or game:

    The germ of violence is laid bare in the child abuser by the sheer accident of his individual experience ... in a word, to a greater degree than we like to admit, we are all potential child abusers.
    F. Gonzalez-Crussi, Mexican professor of pathology, author. “Reflections on Child Abuse,” Notes of an Anatomist (1985)

    Truth is the cry of all, but the game of few.
    George Berkeley (1685–1753)