Polymerization - Chain-growth

Chain-growth

Chain-growth polymerization (or addition polymerization) involves the linking together of molecules incorporating double or triple carbon-carbon bonds. These unsaturated monomers (the identical molecules that make up the polymers) have extra internal bonds that are able to break and link up with other monomers to form a repeating chain, whose backbone typically contains only carbon atoms. Chain-growth polymerization is involved in the manufacture of polymers such as polyethylene, polypropylene, and polyvinyl chloride (PVC). A special case of chain-growth polymerization leads to living polymerization.

In the radical polymerization of ethylene, its π bond is broken, and the two electrons rearrange to create a new propagating center like the one that attacked it. The form this propagating center takes depends on the specific type of addition mechanism. There are several mechanisms through which this can be initiated. The free radical mechanism is one of the first methods to be used. Free radicals are very reactive atoms or molecules that have unpaired electrons. Taking the polymerization of ethylene as an example, the free radical mechanism can be divided in to three stages: chain initiation, chain propagation, and chain termination.

Free radical addition polymerization of ethylene must take place at high temperatures and pressures, approximately 300 °C and 2000 atm. While most other free radical polymerizations do not require such extreme temperatures and pressures, they do tend to lack control. One effect of this lack of control is a high degree of branching. Also, as termination occurs randomly, when two chains collide, it is impossible to control the length of individual chains. A newer method of polymerization similar to free radical, but allowing more control involves the Ziegler-Natta catalyst, especially with respect to polymer branching.

Other forms of chain growth polymerization include cationic addition polymerization and anionic addition polymerization. While not used to a large extent in industry yet due to stringent reaction conditions such as lack of water and oxygen, these methods provide ways to polymerize some monomers that cannot be polymerized by free radical methods such as polypropylene. Cationic and anionic mechanisms are also more ideally suited for living polymerizations, although free radical living polymerizations have also been developed.

Esters of acrylic acid contain a carbon-carbon double bond which is conjugated to an ester group. This allows the possibility of both types of polymerization mechanism. An acrylic ester by itself can undergo chain-growth polymerization to form a homopolymer with a carbon-carbon backbone, such as poly(methyl methacrylate). Also, however, certain acrylic esters can react with diamine monomers by nucleophilic conjugate addition of amine groups to acrylic C=C bonds. In this case the polymerization proceeds by step-growth and the products are poly(beta-amino ester) copolymers, with backbones containing nitrogen (as amine) and oxygen (as ester) as well as carbon.

Read more about this topic:  Polymerization