Polygamma Function

Polygamma Function

In mathematics, the polygamma function of order m is a meromorphic function on and defined as the (m+1)-th derivative of the logarithm of the gamma function:

Thus

holds where ψ(z) is the digamma function and Γ(z) is the gamma function. They are holomorph on . At all the nonnegative integers these polygamma functions have a pole of order m + 1. The function ψ(1)(z) is sometimes called the trigamma function.


The logarithm of the gamma function and the first few polygamma functions in the complex plane

\ln\Gamma(z)

\psi^{(0)}(z)

\psi^{(1)}(z)

\psi^{(2)}(z)

\psi^{(3)}(z)

\psi^{(4)}(z)

Read more about Polygamma Function:  Integral Representation, Recurrence Relation, Reflection Relation, Multiplication Theorem, Series Representation, Taylor Series, Asymptotic Expansion

Famous quotes containing the word function:

    As a medium of exchange,... worrying regulates intimacy, and it is often an appropriate response to ordinary demands that begin to feel excessive. But from a modernized Freudian view, worrying—as a reflex response to demand—never puts the self or the objects of its interest into question, and that is precisely its function in psychic life. It domesticates self-doubt.
    Adam Phillips, British child psychoanalyst. “Worrying and Its Discontents,” in On Kissing, Tickling, and Being Bored, p. 58, Harvard University Press (1993)