In molecular biology, repeat induced point-mutation or RIP is a process by which DNA accumulates G:C to A:T transition mutations. Genomic evidence indicates that RIP occurs or has occurred in a variety of fungi while experimental evidence indicates that RIP is active in Neurospora crassa, Podospora anserina, Magnaporthe grisea, Leptosphaeria maculans, Gibberella zeae and Nectria haematococca. In Neurospora crassa, sequences mutated by RIP are often methylated de novo.
RIP occurs during the sexual stage in haploid nuclei after fertilization but prior to meiotic DNA replication. In Neurospora crassa, repeat sequences of at least 400 base pairs in length are vulnerable to RIP. Repeats with as low as 80% nucleotide identity may also be subject to RIP. Though the exact mechanism of repeat recognition and mutagenesis are poorly understood, RIP results in repeated sequences undergoing multiple transition mutations.
The RIP mutations do not seem to be limited to repeated sequences. Indeed, for example, in the phytopathogenic fungus L. maculans, RIP mutations are found in single copy regions, adjacent to the repeated elements. These regions are either non-coding regions or genes encoding small secreted proteins including avirulence genes. The degree of RIP within these single copy regions was proportional to their proximity to repetitive elements.
Rep and Kistler have speculated that the presence of highly repetitive regions containing transposons, may promote mutation of resident effector genes. So the presence of effector genes within such regions is suggested to promote their adaptation and diversification when exposed to strong selection pressure.
As RIP mutation is traditionally observed to be restricted to repetitive regions and not single copy regions, Fudal et al. suggested that leakage of RIP mutation might occur within a relatively short distance of a RIP-affected repeat. Indeed, this has been reported in N. crassa whereby leakage of RIP was detected in single copy sequences at least 930 bp from the boundary of neighbouring duplicated sequences. To elucidate the mechanism of detection of repeated sequences leading to RIP may allow to understand how the flanking sequences may also be affected.
Read more about this topic: Point Mutation
Famous quotes containing the words repeat and/or induced:
“What other words, we may almost ask, are memorable and worthy to be repeated than those which love has inspired? It is wonderful that they were ever uttered. They are few and rare indeed, but, like a strain of music, they are incessantly repeated and modulated by the memory. All other words crumble off with the stucco which overlies the heart. We should not dare to repeat these now aloud. We are not competent to hear them at all times.”
—Henry David Thoreau (18171862)
“Few can be induced to labor exclusively for posterity; and none will do it enthusiastically. Posterity has done nothing for us; and theorize on it as we may, practically we shall do very little for it, unless we are made to think we are at the same time doing something for ourselves.”
—Abraham Lincoln (18091865)