Point Groups in Two Dimensions - More General Groups

More General Groups

These groups are readily constructed with two-dimensional orthogonal matrices.

The continuous cyclic group SO(2) or C and its subgroups have elements that are rotation matrices:


R(\theta) =
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
\end{bmatrix}

where SO(2) has any possible θ. Not surprisingly, SO(2) and its subgroups are all abelian; addition of rotation angles commutes.

For discrete cyclic groups Cn, elements Cnk = R(2πk/n)

The continuous dihedral group O(2) or D and its subgroups with reflections have elements that include not only rotation matrices, but also reflection matrices:


S(\theta) =
\begin{bmatrix}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta \\
\end{bmatrix}

where O(2) has any possible θ. However, the only abelian subgroups of O(2) with reflections are D1 and D2.

For discrete dihedral groups Dn, elements Cnkσ = S(2πk/n)

When one uses polar coordinates, the relationship of these groups to one-dimensional symmetry groups becomes evident.

Types of subgroups of SO(2):

  • finite cyclic subgroups Cn (n ≥ 1); for every n there is one isometry group, of abstract group type Zn
  • finitely generated groups, each isomorphic to one of the form Zm Z n generated by Cn and m independent rotations with an irrational number of turns, and m, n ≥ 1; for each pair (m, n) there are uncountably many isometry groups, all the same as abstract group; for the pair (1, 1) the group is cyclic.
  • other countable subgroups. For example, for an integer n, the group generated by all rotations of a number of turns equal to a negative integer power of n
  • uncountable subgroups, including SO(2) itself

For every subgroup of SO(2) there is a corresponding uncountable class of subgroups of O(2) that are mutually isomorphic as abstract group: each of the subgroups in one class is generated by the first-mentioned subgroup and a single reflection in a line through the origin. These are the (generalized) dihedral groups, including the finite ones Dn (n ≥ 1) of abstract group type Dihn. For n = 1 the common notation is Cs, of abstract group type Z2.

As topological subgroups of O(2), only the finite isometry groups and SO(2) and O(2) are closed.

These groups fall into two distinct families, according to whether they consist of rotations only, or include reflections. The cyclic groups, Cn (abstract group type Zn), consist of rotations by 360°/n, and all integer multiples. For example, a four legged stool has symmetry group C4, consisting of rotations by 0°, 90°, 180°, and 270°. The symmetry group of a square belongs to the family of dihedral groups, Dn (abstract group type Dihn), including as many reflections as rotations. The infinite rotational symmetry of the circle implies reflection symmetry as well, but formally the circle group S1 is distinct from Dih(S1) because the latter explicitly includes the reflections.

An infinite group need not be continuous; for example, we have a group of all integer multiples of rotation by 360°/√2, which does not include rotation by 180°. Depending on its application, homogeneity up to an arbitrarily fine level of detail in a transverse direction may be considered equivalent to full homogeneity in that direction, in which case these symmetry groups can be ignored.

Cn and Dn for n = 1, 2, 3, 4, and 6 can be combined with translational symmetry, sometimes in more than one way. Thus these 10 groups give rise to 17 wallpaper groups.

Read more about this topic:  Point Groups In Two Dimensions

Famous quotes containing the words general and/or groups:

    A general loathing of a gang or sect usually has some sound basis in instinct.
    Ezra Pound (1885–1972)

    If we can learn ... to look at the ways in which various groups appropriate and use the mass-produced art of our culture ... we may well begin to understand that although the ideological power of contemporary cultural forms is enormous, indeed sometimes even frightening, that power is not yet all-pervasive, totally vigilant, or complete.
    Janice A. Radway (b. 1949)