Method
Given two input images and :
Apply a window function (e.g., a Hamming window) on both images to reduce edge effects. Then, calculate the discrete 2D Fourier transform of both images.
Calculate the cross-power spectrum by taking the complex conjugate of the second result, multiplying the Fourier transforms together elementwise, and normalizing this product elementwise.
Obtain the normalized cross-correlation by applying the inverse Fourier transform.
Determine the location of the peak in .
Commonly, interpolation methods are used to estimate the peak location to non-integer values, despite the fact that the data are discrete. Because the Fourier representation of the data has already been computed, it is especially convenient to use the Fourier shift theorem with real-valued shifts for this purpose. It is also possible to infer the peak location from phase characteristics in Fourier space without the inverse transformation, as noted by Stone
Read more about this topic: Phase Correlation
Famous quotes containing the word method:
“Protestantism has the method of Jesus with His secret too much left out of mind; Catholicism has His secret with His method too much left out of mind; neither has His unerring balance, His intuition, His sweet reasonableness. But both have hold of a great truth, and get from it a great power.”
—Matthew Arnold (18221888)
“A method of child-rearing is notor should not bea whim, a fashion or a shibboleth. It should derive from an understanding of the developing child, of his physical and mental equipment at any given stage, and, therefore, his readiness at any given stage to adapt, to learn, to regulate his behavior according to parental expectations.”
—Selma H. Fraiberg (20th century)
“Unlike Descartes, we own and use our beliefs of the moment, even in the midst of philosophizing, until by what is vaguely called scientific method we change them here and there for the better. Within our own total evolving doctrine, we can judge truth as earnestly and absolutely as can be, subject to correction, but that goes without saying.”
—Willard Van Orman Quine (b. 1908)