Parallelogram Law - The Parallelogram Law in Inner Product Spaces

The Parallelogram Law in Inner Product Spaces

In a normed space, the statement of the parallelogram law is an equation relating norms:

In an inner product space, the norm is determined using the inner product:

As a consequence of this definition, in an inner product space the parallelogram law is an algebraic identity, readily established using the properties of the inner product:

Adding these two expressions:

as required.

If x is orthogonal to y, then and the above equation for the norm of a sum becomes:

which is Pythagoras' theorem.

Read more about this topic:  Parallelogram Law

Famous quotes containing the words law, product and/or spaces:

    One of the reforms to be carried out during the incoming administration is a change in our monetary and banking laws, so as to secure greater elasticity in the forms of currency available for trade and to prevent the limitations of law from operating to increase the embarrassment of a financial panic.
    William Howard Taft (1857–1930)

    He was the product of an English public school and university. He was, moreover, a modern product of those seats of athletic exercise. He had little education and highly developed muscles—that is to say, he was no scholar, but essentially a gentleman.
    H. Seton Merriman (1862–1903)

    Surely, we are provided with senses as well fitted to penetrate the spaces of the real, the substantial, the eternal, as these outward are to penetrate the material universe. Veias, Menu, Zoroaster, Socrates, Christ, Shakespeare, Swedenborg,—these are some of our astronomers.
    Henry David Thoreau (1817–1862)