Parallelogram Law - Normed Vector Spaces Satisfying The Parallelogram Law

Normed Vector Spaces Satisfying The Parallelogram Law

Most real and complex normed vector spaces do not have inner products, but all normed vector spaces have norms (by definition). For example, a commonly used norm is the p-norm:

where the are the components of vector .

Given a norm, one can evaluate both sides of the parallelogram law above. A remarkable fact is that if the parallelogram law holds, then the norm must arise in the usual way from some inner product. In particular, it holds for the p-norm if and only if p = 2, the so-called Euclidean norm or standard norm.

For any norm satisfying the parallelogram law (which necessarily is an inner product norm), the inner product generating the norm is unique as a consequence of the polarization identity. In the real case, the polarization identity is given by:

or, equivalently, by:

In the complex case it is given by:

For example, using the p-norm with p = 2 and real vectors, the evaluation of the inner product proceeds as follows:

\begin{align}
\langle x, y\rangle&={\|x+y\|^2-\|x-y\|^2\over 4}\\
&=\frac{1}{4} \left\\
&=\frac{1}{4} \left\\
&=(x\cdot y),
\end{align}

which is the standard dot product of two vectors.

Read more about this topic:  Parallelogram Law

Famous quotes containing the words spaces, satisfying and/or law:

    Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,—far as they were distant from us, so were they from one another,—nay, some were twice as far from each other as from us,—impressed us with a sense of the immensity of the ocean, the “unfruitful ocean,” as it has been called, and we could see what proportion man and his works bear to the globe.
    Henry David Thoreau (1817–1862)

    In old times people used to try and square the circle; now they try and devise schemes for satisfying the Irish nation.
    Samuel Butler (1835–1902)

    It will be seen that we contemplate a time when man’s will shall be law to the physical world, and he shall no longer be deterred by such abstractions as time and space, height and depth, weight and hardness, but shall indeed be the lord of creation.
    Henry David Thoreau (1817–1862)