Downward Closed Sets of Ordinals
A set is downward closed if anything less than an element of the set is also in the set. If a set of ordinals is downward closed, then that set is an ordinal—the least ordinal not in the set.
Examples:
- The set of ordinals less than 3 is 3 = { 0, 1, 2 }, the smallest ordinal not less than 3.
- The set of finite ordinals is infinite, the smallest infinite ordinal: ω.
- The set of countable ordinals is uncountable, the smallest uncountable ordinal: ω1.
Read more about this topic: Ordinal Number
Famous quotes containing the words downward, closed and/or sets:
“But what she meets and what she fears
Are less than are the downward years,
Drawn slowly to the foamless weirs
Of age, were she to lose him.”
—Edwin Arlington Robinson (18691935)
“Thus piteously Love closed what he begat:
The union of this ever-diverse pair!
These two were rapid falcons in a snare,
Condemned to do the flitting of the bat.”
—George Meredith (18281909)
“There is a small steam engine in his brain which not only sets the cerebral mass in motion, but keeps the owner in hot water.”
—Unknown. New York Weekly Mirror (July 5, 1845)