Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy, is a research technique that exploits the magnetic properties of certain atomic nuclei to determine physical and chemical properties of atoms or the molecules in which they are contained. It relies on the phenomenon of nuclear magnetic resonance and can provide detailed information about the structure, dynamics, reaction state, and chemical environment of molecules.

Most frequently, NMR spectroscopy is used by chemists and biochemists to investigate the properties of organic molecules, though it is applicable to any kind of sample that contains nuclei possessing spin. Suitable samples range from small compounds analyzed with 1-dimensional proton or carbon-13 NMR spectroscopy to large proteins or nucleic acids using 3 or 4-dimensional techniques. The impact of NMR spectroscopy on the sciences has been substantial because of the range of information and the diversity of samples, including solutions and solids.

Read more about Nuclear Magnetic Resonance Spectroscopy:  Basic NMR Techniques, Correlation Spectroscopy, Solid-state Nuclear Magnetic Resonance

Famous quotes containing the words nuclear, magnetic and/or resonance:

    The problems of the world, AIDS, cancer, nuclear war, pollution, are, finally, no more solvable than the problem of a tree which has borne fruit: the apples are overripe and they are falling—what can be done?... Nothing can be done, and nothing needs to be done. Something is being done—the organism is preparing to rest.
    David Mamet (b. 1947)

    We are in great haste to construct a magnetic telegraph from Maine to Texas; but Maine and Texas, it may be, have nothing important to communicate.
    Henry David Thoreau (1817–1862)

    It is closing time in the gardens of the West and from now on an artist will be judged only by the resonance of his solitude or the quality of his despair.
    Cyril Connolly (1903–1974)