Stable Normal Bundle
Abstract manifolds have a canonical tangent bundle, but do not have a normal bundle: only an embedding (or immersion) of a manifold in another yields a normal bundle. However, since every compact manifold can be embedded in, by the Whitney embedding theorem, every manifold admits a normal bundle, given such an embedding.
There is in general no natural choice of embedding, but for a given M, any two embeddings in for sufficiently large N are regular homotopic, and hence induce the same normal bundle. The resulting class of normal bundles (it is a class of bundles and not a specific bundle because N could vary) is called the stable normal bundle.
Read more about this topic: Normal Bundle
Famous quotes containing the words stable, normal and/or bundle:
“You mustnt look in my novel for the old stable ego of the character. There is another ego, according to whose action the individual is unrecognisable.”
—D.H. (David Herbert)
“The obese is ... in a total delirium. For he is not only large, of a size opposed to normal morphology: he is larger than large. He no longer makes sense in some distinctive opposition, but in his excess, his redundancy.”
—Jean Baudrillard (b. 1929)
“In the quilts I had found good objectshospitable, warm, with soft edges yet resistant, with boundaries yet suggesting a continuous safe expanse, a field that could be bundled, a bundle that could be unfurled, portable equipment, light, washable, long-lasting, colorful, versatile, functional and ornamental, private and universal, mine and thine.”
—Radka Donnell-Vogt, U.S. quiltmaker. As quoted in Lives and Works, by Lynn F. Miller and Sally S. Swenson (1981)