In linear algebra, a nilpotent matrix is a square matrix N such that
for some positive integer k. The smallest such k is sometimes called the degree of N.
More generally, a nilpotent transformation is a linear transformation L of a vector space such that Lk = 0 for some positive integer k (and thus, Lj = 0 for all j ≥ k). Both of these concepts are special cases of a more general concept of nilpotence that applies to elements of rings.
Read more about Nilpotent Matrix: Examples, Characterization, Classification, Flag of Subspaces, Additional Properties, Generalizations
Famous quotes containing the word matrix:
“As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.”
—Margaret Atwood (b. 1939)