Newton's Theorem of Revolving Orbits - Closed Orbits and Inverse-cube Central Forces

Closed Orbits and Inverse-cube Central Forces

Two types of central forces—those that increase linearly with distance, F = Cr, such as Hooke's law, and inverse-square forces, F = C/r2, such as Newton's law of universal gravitation and Coulomb's law—have a very unusual property. A particle moving under either type of force always returns to its starting place with its initial velocity, provided that it lacks sufficient energy to move out to infinity. In other words, the path of a bound particle is always closed and its motion repeats indefinitely, no matter what its initial position or velocity. As shown by Bertrand's theorem, this property is not true for other types of forces; in general, a particle will not return to its starting point with the same velocity.

However, Newton's theorem shows that an inverse-cubic force may be applied to a particle moving under a linear or inverse-square force such that its orbit remains closed, provided that k equals a rational number. (A number is called "rational" if it can be written as a fraction m/n, where m and n are integers.) In such cases, the addition of the inverse-cubic force causes the particle to complete m rotations about the center of force in the same time that the original particle completes n rotations. This method for producing closed orbits does not violate Bertrand's theorem, because the added inverse-cubic force depends on the initial velocity of the particle.

Harmonic and subharmonic orbits are special types of such closed orbits. A closed trajectory is called a harmonic orbit if k is an integer, i.e., if n = 1 in the formula k = m/n. For example, if k = 3 (green planet in Figures 1 and 4, green orbit in Figure 9), the resulting orbit is the third harmonic of the original orbit. Conversely, the closed trajectory is called a subharmonic orbit if k is the inverse of an integer, i.e., if m = 1 in the formula k = m/n. For example, if k = 1/3 (green planet in Figure 5, green orbit in Figure 10), the resulting orbit is called the third subharmonic of the original orbit. Although such orbits are unlikely to occur in nature, they are helpful for illustrating Newton's theorem.

Read more about this topic:  Newton's Theorem Of Revolving Orbits

Famous quotes containing the words central forces, closed, orbits, central and/or forces:

    For us necessity is not as of old an image without us, with whom we can do warfare; it is a magic web woven through and through us, like that magnetic system of which modern science speaks, penetrating us with a network subtler than our subtlest nerves, yet bearing in it the central forces of the world.
    Walter Pater (1839–1894)

    One man’s observation is another man’s closed book or flight of fancy.
    Willard Van Orman Quine (b. 1908)

    To me, however, the question of the times resolved itself into a practical question of the conduct of life. How shall I live? We are incompetent to solve the times. Our geometry cannot span the huge orbits of the prevailing ideas, behold their return, and reconcile their opposition. We can only obey our own polarity.
    Ralph Waldo Emerson (1803–1882)

    When life has been well spent, age is a loss of what it can well spare,—muscular strength, organic instincts, gross bulk, and works that belong to these. But the central wisdom, which was old in infancy, is young in fourscore years, and dropping off obstructions, leaves in happy subjects the mind purified and wise.
    Ralph Waldo Emerson (1803–1882)

    And whoever forces himself to love anybody
    begets a murderer in his own body.
    —D.H. (David Herbert)