Natural Exponential Family - Natural Exponential Families With Quadratic Variance Functions (NEF-QVF)

Natural Exponential Families With Quadratic Variance Functions (NEF-QVF)

A special case of the natural exponential families are those with quadratic variance functions. Six NEFs have quadratic variance functions (QVF) in which the variance of the distribution can be written as a quadratic function of the mean. These are called NEF-QVF. The properties of these distributions were first described by Carl Morris.

Read more about this topic:  Natural Exponential Family

Famous quotes containing the words natural, families, variance and/or functions:

    Though a censure lies against those who are poor and proud, yet is Pride sooner to be forgiven in a poor person than in a rich one; since in the latter it is insult and arrogance; in the former, it may be a defense against temptations to dishonesty; and, if manifested on proper occasions, may indicate a natural bravery of mind, which the frowns of fortune cannot depress.
    Samuel Richardson (1689–1761)

    Accidents will occur in the best-regulated families; and in families not regulated by that pervading influence which sanctifies while it enhances ... in short, by the influence of Woman, in the lofty character of Wife, they may be expected with confidence, and must be borne with philosophy.
    Charles Dickens (1812–1870)

    There is an untroubled harmony in everything, a full consonance in nature; only in our illusory freedom do we feel at variance with it.
    Fyodor Tyutchev (1803–1873)

    Those things which now most engage the attention of men, as politics and the daily routine, are, it is true, vital functions of human society, but should be unconsciously performed, like the corresponding functions of the physical body.
    Henry David Thoreau (1817–1862)